# Free Will and Mathematics

Alekandr Lokshin has a book Free Will and Mathematics (in Russian)

and he has started a discussion on the everything list with an abstract of the book in English

Alekandr Lokshin, 27.05.2012 20:51:

Alexander A. Lokshin
FREE WILL AND MATHEMATICS
Moscow, MAKS-Press, 2012 , 40 pages (abstract)

The general idea of the booklet is as follows. All main mathematical notions ( such as infinity, variable, integer number) implicitly depend on the notion of free will. Therefore a scientist employing mathematics when modeling nature cannot deny the existence of the free will. (Unfortunately, Stephen Hawking made this incorrect conclusion in “The Grand Design”).

To make the general idea more clear, suppose we are proving the well- known formula S = ah/2 for the area of a triangle. Our proof will necessarily begin as follows:

“Let us consider AN ARBITRARY triangle…” Here we obviously apply the operator of the free will choice which cannot be replaced by the random choice. In fact, let us imagine that our proof begins in such a way : “Let us consider A RANDOMLY SELECTED triangle…” Surely, such a beginning will not lead us to the desired proof. The formula obtained for a randomly selected triangle is not necessarily valid for all triangles!

On the other hand when proving the formula S=ab/2, obviously, it is impossible to consider all the triangles simultaneously. Thus the operator of the free will choice must be used inevitably. More widely, let us consider a variable x which is running about a sphere of radius 1. Let us pose a question: what does x denote?

Clearly,
a) x does not denote an object,
b) x does not denote a multitude,
c) x does not denote a physical process.

In my opinion, x denotes the free will choice which the reader of the mathematical text must do. So, the notion of a variable inevitably is based on the notion of the free will.

Moreover, considerations adduced in the book show that the notion of an integer number is based on the notion of the free will as well. In fact, when constructing integers by means of one-to-one correspondence we implicitly assume that the mentioned correspondence is realized by means of continuous lines connecting pairs of objects. But to ensure continuity of lines above-mentioned one must consider an arbitrary point on such a line!

A new approach to the Alan Turing problem (how to distinguish a person from an android) is also proposed ; this approach is based on the idea that an android cannot generate the notion of an arbitrary object.

My comment is below:

I have started reading Collingwood’s An Essay on Metaphysics and I see one definition that seems to be pertinent to this discussion.

p. 27 “Def. 4. To assume it to suppose by an act of free choice.

A person who ‘makes an assumption’ is making a supposition about which he is aware that he might if he chose make not that but another. All assumptions are suppositions, but all suppositions are not assumptions: for some are made altogether unawares, and others, though the persons what make them may be conscious of making them, are made without any consciousness of the possibility, if it is a possibility, that others might have been made instead. When correctly used, the word ‘assumption’ is always used with this implication of free choice, as when it is said ‘let us assume x = 10’.”

What about that? It looks to be not far away from what Aleksandr Lokshin has suggested.

On his sole responsibility

A quote from Robin George Collingwood,  An Essay on Metaphysics (Revised Edition with an Introduction and additional material edited by Rex Martin).

p. 294-295 “A man is said to act ‘on his own responsibility’ or ‘on his sole responsibility’ when (1) his knowledge or belief about the situation in not dependent on information or persuasion from any one else, and (2) his intentions or purposes are similarly independent. In this case (the case in which a man is ordinarily said to exhibit ‘initiative’) his action is not uncaused. It still has both a causa quod and a causa ut. But because he has done it for himself, unaided, the double work of envisaging the situation and forming the intention, which in the alternative case another man (who is therefore said to cause his action) had done for him, he can now be said to cause his own action as well as to do it. If he invariably acted in that way the total complex of his activities could be called self-causing (causa sui); an expression which refers to absence of persuasion or inducement on the part of another, and is hence quite intelligible and significant, although it has been denounced as non-sensical by people who have not taken the trouble to consider what the word ’cause’ means.”

Posted

in

by