Существуют ли комплексные числа?

Физик Сабина Хоссенфельдер задалась вопросом о том, существуют ли комплексные числа. Из введения к заметке не совсем понятно, рассматривает ли она этот вопрос в шутку или всерьез, хотя можно предположить, что этот вопрос ее действительно волнует.

Поводом к рассмотрению стала статья, недавно выложенная в arxiv, ‘Квантовой физике необходимы комплексные числа‘ . В статье предлагаются эксперименты, напоминающие эксперименты, связанные с неравенствами Белла. Только в данном случае на кону другой вопрос — можно ли создать квантовую физику без использования комплексных чисел. То есть, является ли использование комплексных чисел в квантовой физике формальным математическим трюком или комплексная арифметика каким-то образом неразрывно связана с происходящими физическими процессами.

Следует отметить, что авторы статьи не ставят вопрос о существовании комплексных чисел. Также этот вопрос не рассматривает Скотт Ааронсон, достаточно положительно отреагировавший на статью в своем блоге. Реакция Хоссенфельдер оказалось более непосредственной, ее отношение к происходящему передает эта цитата:

‘только если математическая структура действительно необходима для описания наблюдений, мы можем сказать, что она “существует” научно значимым образом.’

Другими словами, если эксперименты в будущем покажут, что квантовая физика без комплексных чисел невозможна, то можно будет уверенно сказать, что комплексные числа существуют.

Среди комментариев можно увидеть вопросы, которые обобщают вопрос, поставленный Хоссенфельдер, на математику с действительными числами:

‘Существует ли пространство Гильберта? Существуют ли линейные операторы? Существуют ли числа Грассмана?’

Ответ Хоссенфельдер совместим с цитатой выше:

‘Это зависит от вашего понимания «существовать». Если вы считаете, что пространство и время существуют, то гильбертовы пространства (по крайней мере некоторые из них) также существуют.’

Я задал похожий вопро: существует ли число Пи, поскольку физика на него завязана. Хоссенфельдер отделалась от моего вопроса таким образом:

‘До сих пор никто не заметил разницы между округленным Пи, скажем до сотого знака, и Пи. Таким образом, физика полностью возможна без Пи.’

Вопрос о существовании округленного Пи остался открытым. В целом затронутый вопрос бьет в сердцевину философии физикализма:

‘Физикализм — это тезис о том, что все является физическим’

Физикализм — это версия материализма, которая пытается избежать вопроса о том, является ли поле материей или нет. Логика примерно такая — раз физики говорят о поле, значит поле существует. Другими словами, существует только то, о чем говорят физики.

Однако поставленный вопрос Хоссенфельдер хорошо показывает, что фундаментальная физика невозможна без использования математических объектов, при этом неважно, требуется ли комплексная математика для построения квантовой механики или нет. В любом случае возникает неразрешимый вопрос, что такое физическое без математического.

Квантовая механика в этом отношении является крайне хорошим примером. До ее возникновения философы могли представлять себе мироздание в виде множества взаимодействующих частиц. Однако, в квантовой механике элементарная частица неразрывно связана с волновой функцией. Поэтому вопрос становится таким: относится ли волновая функция к физическому или нет. Более того, в теории квантового поля частица является возбужденным состоянием квантового поля, то есть, представить себе физическое становится гораздо сложнее.

Существование математических объектов самих по себе поднимает вопрос о существовании Платонии — идеального мира, в котором существуют математические объекты. Философы, поддерживающие физикализм, обычно отвергают существование Платонии, поскольку последняя явно связана с идеализмом — получается, что далеко не все является физическим. В данной ситуации философы-физикалисты предпочитают сказать, что математика — это язык, разработанный людьми, которые в ходе своего развития приспосабливались к окружающему их внешнему физическому миру.

Интересно отметить, что есть физики, которые занимают аналогичную позицию. Например, физик Брайан Грин в последний книге пишет о математике таким образом:

‘Исторически физическая интуиция наших предков питалась информацией о закономерностях, очевидных в повседневной жизни, от падающих камней до ломающихся ветвей и несущихся потоков; инстинктивное понимание повседневной механики несет в себе явную пользу для выживания.’

‘естественный отбор сформировал наши интуитивные представления об основах физики’

‘Уравнения, лежащие в основе современной физики, представляют собой наши самые точные формулировки этих законов. При помощи многочисленных экспериментов и наблюдений мы установили, что эти уравнения дают чрезвычайно точное описание мира. Но у нас нет никакой гарантии, что они выражены посредством лексикона, изначально присущего природе. Хотя я считаю это маловероятным, но допускаю возможность, что в будущем, когда мы с гордостью покажем инопланетным гостям свои уравнения, они вежливо улыбнутся и скажут, что они тоже начинали с математики и лишь затем открыли настоящий язык реальности.’

Таким образом, с точки зрения Грина физическое не есть математическое. Однако что-же такое в этом случае физическое?

В заключение приведу ответ физика Шона Кэрролла, сторонника многомировой интерпретации квантовой механики, на вопрос, что такое реальность:

‘Лучший ответ, который мы можем дать, заключается в том, что реальность это вектор в гильбертовом пространстве.’

Отмечу, что из книг Кэрролла трудно понять его позицию по поводу математики. С одной стороны, он продвигает поэтический натурализм и в этом случае я бы ожидал высказывание в духе Грина — математика это всего лишь хороший способ обсуждения мира. С другой, если реальность — это вектор в гильбертовом пространстве, то следовало бы ожидать, что согласно Кэрроллу это самое гильбертово пространство непременно существует.

Информация

Sabine Hossenfelder, Do Complex Numbers Exist? March 06, 2021

http://backreaction.blogspot.com/2021/03/do-complex-numbers-exist.html

Дэниел Столджар, Физикализм, Стэнфордская философская энциклопедия: переводы избранных статей.

http://www.philosophy.ru/ru/physicalism/

Брайан Грин, До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной, 2020 (спасибо hyperboreus за ссылку).

Рецензия книги и обсуждение затронутой проблемы

https://hyperboreus.livejournal.com/188286.html

Sean Carroll Thinks We All Exist on Multiple Worlds

https://www.wired.com/story/sean-carroll-thinks-we-all-exist-on-multiple-worlds/

Обсуждение https://evgeniirudnyi.livejournal.com/214460.html

Обсуждение

https://evgeniirudnyi.livejournal.com/249762.html

https://www.facebook.com/evgenii.rudnyi/posts/2202684343199306


Comments are closed.